安徽农业科学

2019, v.47;No.614(01) 107-110

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于BP神经网络预测林内PM_(2.5)浓度
Prediction of PM_(2.5) Concentration in Forest Based on BP Artificial Neural Network

陈博;李迎春;夏振平;

摘要(Abstract):

[目的]利用BP神经网络预测林内PM_(2.5)浓度。[方法]利用人工神经网络理论,采用2013年7月—2014年5月野外实时监测数据,建立了以气象参数、污染源强变量和林分结构特征为输入因子,林内PM_(2.5)小时平均浓度为输出因子的预测模型,并对其预测精度进行了评价。[结果]BP人工神经网络模型能够很好地捕捉污染物浓度与气象因素和林分结构间的非线性影响规律,预测结果的平均相对误差为1.71×10~(-3),均方根误差为6.77,拟合优度达0.98,模型具有很高的预测精度。而传统的多元线性回归(MLR)模型预测结果的平均相对误差、均方根误差和拟合优度分别为0.27、22.92和0.93。[结论]研究成果印证了应用BP人工神经网络模型预测林内PM_(2.5)浓度的可行性和准确性。

关键词(KeyWords): PM2.5;BP人工神经网络;多元线性回归;林分结构

Abstract:

Keywords:

基金项目(Foundation): 国家林业公益性行业科研项目(201304301)

作者(Author): 陈博;李迎春;夏振平;

Email:

DOI:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享