北京温榆河流域周边河岸带景观结构与土壤碳储量响应Structure and Soil Carbon Reserves Response of Riparian Zone Landscape Surrounding Beijing Wenyu River Basin
孙荣凯;陈智慧;
摘要(Abstract):
[目的]研究北京温榆河流域周边河岸带景观结构与土壤碳储量响应,为岸边带生态系统的恢复重建提供科学依据。[方法]以位于北京城郊区的温榆河昌平段为研究区,分别采集岸边带自然植被、半自然植被、人工植被3种植被类型0~20、20~40、40~60 cm的土层土样,研究土壤有机碳垂直分布特征。[结果]0~20 cm土壤有机碳密度为1.842 0 kg/m~2,20~40 cm为1.691 2 kg/m~2,40~60 cm为1.460 2 kg/m~2。自然植被0~20 cm土壤有机碳密度为2.326 4 kg/m~2,20~40 cm为2.413 3 kg/m~2,40~60 cm为1.377 4 kg/m~2;半自然植被0~20 cm土壤有机碳密度为1.673 6 kg/m~2,20~40 cm为1.545 1 kg/m~2,40~60 cm为1.360 4 kg/m~2;人工植被0~20 cm土壤有机碳密度为1.751 5 kg/m~2,20~40 cm为1.430 6 kg/m~2,40~60 cm为1.394 7 kg/m~2。[结论]温榆河河岸带土壤0~60 cm的碳含量随着土壤深度的增加呈垂直变化,各土层土壤碳含量从大到小依次为0~20、20~40、40~60 cm;各植被类型的土壤碳含量由大到小依次为自然植被、半自然植被、人工植被。
关键词(KeyWords): 河边带;土壤有机碳;空间分布;植被类型
基金项目(Foundation):
作者(Author): 孙荣凯;陈智慧;
Email:
DOI: 10.13989/j.cnki.0517-6611.2016.13.066
参考文献(References):
- [1]夏继红,严忠民.生态河岸带的概念及功能[J].水利水电技术,2006,37(5):14-18.
- [2]MEEHAN W R,SWANSON F J,SEDELL J R.Influences of riparian vegetation on aquatic ecosystems with particular reference to salmonid fishes and their food supply[M]//JOHNSON R R,JONES D A.Importance,preservation and management of flood plain wetlands and other riparian ecosystems.Washington:USDA Forest Service,1977:137-145.
- [3]VOGT J,PUUMALAINEN J,KENNEDY P,et al.Integrating information on river networks,catchments and major forest types:Towards the characterisation and analysis of European landscapes[J].Landscape and urban planning,2004,67(1/2/3/4):27-41.
- [4]李新茂,张东旭.关于美国河岸带土壤的研究综述[J].水土保持应用技术,2007(6):11-13.
- [5]NAIMAN R J,DECAMPS H.The ecology of interfaces:Riparian zonesp[J].Annual review of ecology and systematics,1997,28(1):621-658.
- [6]MENGIS M,SCHIF S L,HARRIS M,et al.Multiple geochemical and isotopic approaches for assessing ground water NO3elimination in a riparian zone[J].Groundwater,1999,37(3):448-457.
- [7]夏继红,严忠民.国内外城市河道生态型护岸研究现状及发展趋势[J].中国水土保持,2003(3):20-21.
- [8]黄凯,郭怀成,刘永,等.河岸带生态系统退化机制及其恢复研究进展[J].应用生态学报,2007,18(6):1373-1382.
- [9]MITSCH W J,JORGENSEN S E.Ecological engineering:An introduction to ecotechnology[M].New York:John Wiley and Sons,1989:1-12.
- [10]梁文举,闻大中,李继光,等.开垦对农业生态系统土壤有机碳动态变化的影响[J].农业系统科学与综合研究,2000,16(4):241-244.
- [11]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化[J].地理研究,2002,21(5):551-560.
- [12]张东辉,施明恒,金峰,等.土壤有机碳转化与迁移研究概况[J].土壤,2000(6):305-309.
- [13]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学,1999,18(5):29-35.
- [14]陈庆强,沈承德,易惟熙,等.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-562.
- [15]丁娓,孙霞,贾宏涛,等.放牧强度对天山北坡草甸草原土壤有机碳的影响[J].西南农业学报,2014(4):1596-1600.
- [16]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000(1):11-17.
- [17]JOBBAGY E G,JACK SON R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological applications,2002,10(2):423-436.
- [18]LUGO A E,SANCHEZ M J,BROWN S.Land use and organic carbon content of some subtropical soils[J].Plant and soil,1986,96:185-196.
- [19]KUCHARIK C J,BRYE K R,NORMAN J M,et al.Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin:Potential for SOC sequestration during the next 50 years[J].Ecosystems,2001,4:237-258
- [20]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983
- [21]BECKER-HEIDMANN P,ANDRESEN O,KALMAR D,et al.Carbon dynamics in vertisols as revealed by high-resolution sampling[J].Radiocarbon,2002,44(1):63-73.
- [22]李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[J].应用生态学报,1998,9(4):365-370.
- [23]BERNOUX M,CARVALHO M D S,VOLKOFF B,et al.Brazil’s soil carbon stock[J].Soil Sci Am J,2002,66:888-896.
- [24]SCOTT N A,TATE K R.Giltrap soil carbon in New Zealand:Quantifying monitoring land-use effects on baseline soil carbon stocks[J].Environmental pollution,2002,116:167-186.
- [25]于东升,史学正,孙维侠,等.基于1∶100万土壌数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
- [26]中国科学院南京土壤研究所,土壤理化分析[M].上海:上海科学技术出版社,1978:15-30.
- [27]SCHWARTZ D,NAMRI M.Mapping the total organic Congo[J].Global and planetary change,2002,33:77-93.
- [28]潘根兴.中国有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332.
- [29]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):34-35.