蕹菜Cd-PSC根际土壤酶和微生物特征的研究Characterization of Soil Enzyme and Microorganism of Ipomoea aquatica Forssk. Cd-PSC Rhizosphere
吕保玉;白海强;何东明;
摘要(Abstract):
[目的]为了研究在2种不同镉浓度的农田上蕹菜Cd-PSC和non-Cd-PSC 2个品种根际土壤酶和微生物的特征。[方法]采用自制根箱试验。[结果]蕹菜根际土壤5种酶(脲酶、转化酶、酸碱磷酸酶、蛋白酶)活性和三类微生物(细菌、真菌、放线菌)数量都显著大于非根际土壤(P<0.01)。在同一土壤上,蕹菜品种间酶活性和微生物数量均存在基因型差异(P<0.05);在2种土壤上,脲酶、转化酶、蛋白酶在2个品种间表现不一致,而酸碱磷酸酶则一直表现为Cd-PSC的根际酶活性小于non-Cd-PSC的活性。[结论]Cd-PSC的根系细菌、放线菌的数量显著小于non-Cd-PSC的根系土壤中的数量(P<0.01),而真菌数量显著大于non-Cd-PSC的数量(P<0.05)。
关键词(KeyWords): 蕹菜;Cd-PSC;根际;土壤酶;土壤微生物
基金项目(Foundation):
作者(Author): 吕保玉;白海强;何东明;
Email:
DOI: 10.13989/j.cnki.0517-6611.2014.07.045
参考文献(References):
- [1]万云兵,仇荣亮,陈志良,等.重金属污染土壤中提高植物提取修复功效的探讨[J].环境污染治理技术与设备,2002,3(4):56-59.
- [2]晓云.我国土壤重金属污染[J].金属世界,2000,10(2):5.
- [3]杨肖娥,杨明杰.镉从农业土壤向人类食物链的迁移[J].广州微量元素科学,1996,3(7):1-13.
- [4]OSKARSSON A,WIDELL A,OLSSON I M,et al.Cadmium in food chain and health effects in sensitive population groups[J].Biometals,2004,17:531-534.
- [5]YU H,WANG J L,FANG W,et al.Cadmium accumulation in different rice cultivars and screening 3 for pollution-safe cultivars of rice[J].Science of the Total Environment,2006,370(2/3):302-309.
- [6]苏苗育,罗丹,陈炎辉,等.14种蔬菜对土壤Cd和Pb富集能力的估算[J].福建农林大学学报:自然科学板,2006,35(2):207-211.
- [7]WANG J L,FANG W,YANG ZY,et al.Inter-and intra-specific variations of Cd accumulation of 13 leafy vegetable species grown in Cd contaminated soils[J].J Agr Food Chemistry,2007,55(22):9118-9123.
- [8]刘芷宇.根际动态及其效应研究[J].世界农业,1987(8):39-41.
- [9]陈子英.水稻根系微生物的主要特性[J]微生物学报,1963(2):186-192.
- [10]GUNNISON O,BARKS J W.The rhizosphere ecology of submerged macrophytes[J].Water Resources Bulletin,1989,25:193-201.
- [11]WANG Z W,SHAN X Q,WEN B,et al.Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soil[J].Chemosphere,2002,46:1163-1171.
- [12]KURZ H,SCHULZ R,RMHELD V.Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants[J].Plant Nutr Soil Sci,1999,162:323-328.
- [13]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985:40-59,263-269.
- [14]KANDELER E,GERBER H.Short-term assay of soil urease activity using colorimetric determination of ammonium[J].Biol Fertil Soils,1988,6:68-72.
- [15]EIVAZI F,TABATABAI M A.Phosphatases in soils[J].Soil Biol Biochem,1977,9:167-172.
- [16]SCHINNER F,VON M W.Xylanase,CM-cellulase and invertase activity in soil,an improved method[J].Soil Biol Biochem,1990,22:511-515.
- [17]LADD J N,BUTLER J H A.Short-term assay of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates[J].Soil Biol Biochem,1972,4:19-39.
- [18]许炼峰,都兴仁,刘晴辉,等.重金属Cd和Pb对土壤生物活性影响的初步研究[J].热带亚热带土壤科学,1995,4(4):216-220.
- [19]SOUZA M P,CHU D,ZHAO M,et al.Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants[J].Planta,1999,209:259-263.
- [20]LIU Y,ZHU Y G,CHEN B D,et a1.Influence of the arbuscular mycorrhizal fungus glomus mosseae on uptake of arsenate by the as hyperaccumulator fern Pteris vittat L[J].Mycorrhiza,2005,15:187-192.
- [21]张颖,刘鹏,徐根娣,等.铝胁迫对大豆根际土壤酶的影响[J].浙江师范大学学报,2003,26(2):176-180.
- [22]田永辉,魏杰,卢天国.不同基因型茶树根系活力及根际土壤酶活性研究[J].贵州大学学报,2002,21(3):219-223.
- [23]PANT H K,WARMAN P R.Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases[J].Biology and Fertility of Soil,2000,30:306-311.