重金属结合蛋白基因hmbp在转基因拟南芥中的功能分析Functional Analysis of Heavy Metal Binding Protein Gene hmbp in Transgenic Arabidopsis
周惠;辛培尧;赵丽华;原晓龙;陈杰;周军;
摘要(Abstract):
[目的]分析重金属结合蛋白基因hmbp在转基因拟南芥中的功能。[方法]利用PCR方法从抗辐射奇异球菌(Deinococcus radiodurans)中克隆hmbp基因,并用沾花法转入拟南芥,用氯化镉处理得到的阳性植株后,检测转基因植株中的丙二醛、脯氨酸、可溶性糖、叶绿素含量、相对电导率及SOD、POD活性。[结果]与野生型相比,镉处理后的转基因拟南芥中脯氨酸、可溶性糖含量及SOD、POD活性增加较多,丙二醛含量增加较少,叶绿素含量减少较少。[结论]研究表明hmbp转基因拟南芥对镉具有很高的抗逆性。
关键词(KeyWords): 植物修复;镉;转基因拟南芥;hmbp
基金项目(Foundation): 上海市科技计划项目(CIE01G1106)资助
作者(Author): 周惠;辛培尧;赵丽华;原晓龙;陈杰;周军;
Email:
DOI: 10.13989/j.cnki.0517-6611.2013.10.091
参考文献(References):
- [1]COBBETT C,GOLDSBROUGH P.Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis[J].Annu Rev PlantBiol,2002,53:159-182.
- [2]MISRA S,GEDAMU L.Heavy-metal tolerant transgenic Brassica napus L.and Nicotiana tabacum L.plants[J].Theor Appl Genet,1989,78:161-168.
- [3]GANDIA-HERRERO F,LORENZ A,LARSON T,et al.Detoxfication of theexplosive 2,4,6-trinitrotoluene in Arabidopsis:discovery of bifunctional O-and C-glucosyltransferases[J].Plant J,2008,56:963-974.
- [4]NOVAKOVA M,MACKOVA M,CHRASTILOVA Z,et al.Cloning of thebacterial bphC gene into Nicotiana tabacum to improve the efficiency ofPCB phytoremediation[J].Biotechnol Bioeng,2009,102:29-37.
- [5]SANO D,MYOJO K,OMURA T.Cloning of a Heavy-Metal-Binding ProteinDerived fromActivated-Sludge Microorganisms[J].Appl Environ Microbi-ol,2006,72(9):6377-6380.
- [6]MURASHIGE S F.A revised medium for rapid growth and bioassays withtobacco cultures[J].Plant Physiol,1962,5:473-497.
- [7]MURRAY E E,LOTZER J,EBERLE M.Codon usage in plant genes[J].Nucleic Acids Res,1989,17:477-498.
- [8]ZHANG X,HENRIQUES R,LIN S S,et al.Agrobacterium-mediated trans-formation of Arabidopsis thaliana using the floral dip method[J].Nat Pro-toc,2006,1:641-646.
- [9]JEFFERSON R A,KAVANAGH T A,BEVAN M W.GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higherplants[J].EMBO J,1987,6(13):3901-3907.
- [10]HAVAUX M,LUTZ C,GRIMM B.Chloroplast membrane photostability inchlP transgenic tobacco plants deficient in tocopherols[J].Plant Physiol,2003,132:300-310.
- [11]TANG Z C.Modern experiment procotols in plant physiology[M].Bei-jing:Science Press,1999:302-308.
- [12]FARRAR J F.Carbon partitioning[M]//HALL D O,SCURLOCKM J MO,BOLHR-NORDENKAMPF H R,et al.Photosynthesis and productionin a changing environment:a field and laboratory manual.London:Chap-man&Hall,1993:232-246.
- [13]ESTERBAUER H,SCHAUER R J,ZOLOLNER H.Chemistry and bio-chemistry of 4-hydroxynonenal,malondialdehyde and related aldehydes[J].Free Radical Bio Med,1991,11:81-128.
- [14]王宝山.植物自由基与植物膜伤害[J].植物生理学通讯,1986(2):12-16.
- [15]WECKX J E J,CLIJSTERS H M M.Oxidative damage and defense mech-anisms in primary leaves of Phaseolus vulgaris as result of root assimila-tion of toxic amounts of copper[J].Physiol Plant,2006,96:506-512.
- [16]SMIRNOFF N.Antioxidant systems and plant response to the environment[M]//SMIRNOFF N.Environment and plant metabolism:flexibility andacclimation.Oxford,UK:Bios Scientific Publishers,1995:217-243.
- [17]MONK L S,FAGERSTEDT K V,CRAWFORD R M M.Oxygen toxicityand superoxide dismutase as an antioxidant in physiological stress[J].Plant Physiol,1989,76:456-459.
- [18]LESLIE A W,OLAVI J.Cold-induced freezing tolerance in arabidopsis[J].Plant Physiol,1999,120:391-399.
- [19]SAMARKOON A B,RAUSER W E.Carbohydrate level and photoassimi-late export from leaves of Phaseolus vulgaris exposed to excess cobalt,nickel and zinc[J].Plant Physiol,1979,63:1165-1169.
- [20]SOMASHEKARAIAH B V,PADMAJA K,PRASAD A R K.Phytotoxicityof cadmium ions on ger minating seedlings of mung bean(Phaseolus vul-garis):involvement of lipid peroxides in chlorophyll degradation[J].Physiol Plant,1992,85:85-89.
- [21]CHAOUI A,MAZHOUDI S,GHORBAL M N,et al.Cadmium and zinc in-duction of lipid peroxidation and effects on antioxidant enzymes activitiesin bea(Phaseolus vulgaris L.)[J].Plant Sci,1997,127:139-147.
- [22]WECKX J E J,CLIJSTERS H M M.Zn phytotoxicity induces oxidativestress in primary leaves of Phaseolus vulgaris[J].Plant Physiol Biochem,1997,35:405-410.
- [23]GONZALEZ A,STEFFEN K L,LYNCH J P.Light and excess manganese:Implications for oxidative stress in common bean[J].Plant Physiol,1998,118:493-504.
- [24]KAMPFENKEL K,MONTAGU M V,INZE D.Effect of iron excess onNicotiana plumbaginifolia plants:implication to oxidative stress[J].PlantPhysiol,1995,107:725-735.
- [25]BECANA M,MORAN J F,ITURBE-ORMAETXE I.Iron-dependent oxy-gen free radical generation in plants subjected to environmental stress:toxicity and antioxidant protection[J].Plant Soil,1998,201:137-147.
- [26]FANG W,KAO C H.Enhanced peroxidase activity in rice leaves in re-sponses to excess iron,copper and zinc[J].Plant Sci,2000,158:71-76.
- [27]PRASAD K V S K,SARADHI P P,SHARMILA P.Concerted action ofantioxidant enzymes and curtailed growth under zinc toxicity in Brassicajuncea[J].Environ Exp Bot,1999,42:1-10.
- [28]MADHAVA RAO K V,SRESTY T V.Antioxidative parameters in theseedlings of pigeonpea(Cajanus cajan(L.)Millspaugh)in response toZn and Ni stresses[J].Plant Sci,2000,157:113-128.
- [29]GUPTA M,CUYPERS A,VANGRONSVELD J,et al.Copper affects the enzymes of ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris[J].Physiol Plant,1999,106:262-267.
- [30]TEISSEIRE H,GUY V.Copper-induced changes in antioxidant enzymes activities in fronds of duckweed(Lemna minor)[J].Plant Sci,2000,153:65-72.
- [31]BACCOUCH S,CHAOUI A,FERJANI E E.Nickel-induced oxidative damage and antioxidant responses in Zea mays shoot[J].Plant Physiol Biochem,1998,36:689-694.