基于遗传算法和支持向量机的储粮害虫图像识别Image Recognition of Stored-grain Pests Using SVM and GA
张建华;朱春华;
摘要(Abstract):
建立支持向量机(SVM)模型,用遗传算法自动选择最优的核函数参数,利用该SVM与遗传算法相结合的新型算法对储粮害虫图像进行分类识别。结果表明,该方法所确定的SVM对储粮害虫具有较优的识别率,其整体性能优良。
关键词(KeyWords): 储粮害虫;图像识别;遗传算法;支持向量机
基金项目(Foundation):
作者(Author): 张建华;朱春华;
Email:
DOI: 10.13989/j.cnki.0517-6611.2010.17.057
参考文献(References):
- [1]万拯群.当前我国科学保粮问题之我见[J].粮食储藏,1999,28(1):25-29.
- [2]张红涛,胡玉霞,邱道尹.储粮害虫检测现状[J].河南农业科学,2006,35(3):66-68.
- [3]ZAYAS I Y,STEELE J L,KATCEVICHA.Wheat classification using im-age analysis and crush force parameters[J].Transactions of the ASAE,1996,39(6):2199-2204.
- [4]HUANGLK,WANGMJ.Image thresholdingbyminimizingthe measuresof fuzziness[J].Pattern Recognition,1995,28(1):41-51.
- [5]RIDGWAYC,DAVIES ER,CHAMBERS J.Rapid machine vision methodfor the detection of insects and other particulate biocontaminants of bulkgrain in transit[J].Biosystems Engineering,2002,83(1):21-30.
- [6]VAPNIKV.The nature of statistical learning[M].New York:Springer,1995.
- [7]GE M,DUR,ZHANGC C,et al.Fault diagnosis usingsupport vector ma-chine with an application in metal stamping operations[J].MechanicalSystems and Signal Processing,2004,18:143-159.